Coincident In Vitro Analysis of DNA-PK-Dependent and -Independent Nonhomologous End Joining

نویسندگان

  • Cynthia L. Hendrickson
  • Shubhadeep Purkayastha
  • Elzbieta Pastwa
  • Ronald D. Neumann
  • Thomas A. Winters
چکیده

In mammalian cells, DNA double-strand breaks (DSBs) are primarily repaired by nonhomologous end joining (NHEJ). The current model suggests that the Ku 70/80 heterodimer binds to DSB ends and recruits DNA-PK(cs) to form the active DNA-dependent protein kinase, DNA-PK. Subsequently, XRCC4, DNA ligase IV, XLF and most likely, other unidentified components participate in the final DSB ligation step. Therefore, DNA-PK plays a key role in NHEJ due to its structural and regulatory functions that mediate DSB end joining. However, recent studies show that additional DNA-PK-independent NHEJ pathways also exist. Unfortunately, the presence of DNA-PK(cs) appears to inhibit DNA-PK-independent NHEJ, and in vitro analysis of DNA-PK-independent NHEJ in the presence of the DNA-PK(cs) protein remains problematic. We have developed an in vitro assay that is preferentially active for DNA-PK-independent DSB repair based solely on its reaction conditions, facilitating coincident differential biochemical analysis of the two pathways. The results indicate the biochemically distinct nature of the end-joining mechanisms represented by the DNA-PK-dependent and -independent NHEJ assays as well as functional differences between the two pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1.

DNA nonhomologous end-joining in vivo requires the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4 (LX) complexes. Here, we have examined the impact of histone octamers and linker histone H1 on DNA end-joining in vitro. Packing of the DNA substrate into dinucleosomes does not significantly inhibit ligation by LX. However, LX ligation activity is substantially reduced by the incorp...

متن کامل

Evidence for an inositol hexakisphosphate-dependent role for Ku in mammalian nonhomologous end joining that is independent of its role in the DNA-dependent protein kinase

Nonhomologous end-joining (NHEJ) is an important pathway for the repair of DNA double-strand breaks (DSBs) and plays a critical role in maintaining genomic stability in mammalian cells. While Ku70/80 (Ku) functions in NHEJ as part of the DNA-dependent protein kinase (DNA-PK), genetic evidence indicates that the role of Ku in NHEJ goes beyond its participation in DNA-PK. Inositol hexakisphosphat...

متن کامل

Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.

The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than...

متن کامل

Binding of Inositol Phosphate to DNA-PK and Stimulation of Double-Strand Break Repair

In mammalian cells, double-strand breaks in DNA can be repaired by nonhomologous end-joining (NHEJ), a process dependent upon Ku70/80, DNA-PKcs, XRCC4, and DNA ligase IV. Starting with HeLa cell-free extracts, which promote NHEJ in a reaction dependent upon all of these proteins, we have purified a novel factor that stimulates DNA end-joining in vitro. Using a combination of phosphorus NMR, mas...

متن کامل

Plasmid-based assays for DNA end-joining in vitro.

Double-strand breaks (DSBs) disrupt DNA integrity and cause genomic instability and cancer, mutations, or cell death. Among the pathways utilized by cells of higher eukaryotes to repair this lesion, nonhomologous end-joining (NHEJ) is the most dominant. The biochemical characterization of NHEJ has significantly benefited from in vitro plasmid end-joining assays that can complement and extend in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010